Luminance-Corrected 3D Point Clouds for Road and Street Environments
نویسندگان
چکیده
A novel approach to evaluating night-time road and street environment lighting conditions through 3D point clouds is presented. The combination of luminance imaging and 3D point cloud acquired with a terrestrial laser scanner was used for analyzing 3D luminance on the road surface. A calculation of the luminance (cd/m) was based on the RGB output values of a Nikon D800E digital still camera. The camera was calibrated with a reference luminance source. The relative orientation between the luminance images and intensity image of the 3D point cloud was solved in order to integrate the data sets into the same coordinate system. As a result, the 3D model of road environment luminance is illustrated and the ability to exploit the method for evaluating the luminance distribution on the road surface is presented. Furthermore, the limitations and future prospects of the methodology are addressed. The method provides promising results for studying road lighting conditions OPEN ACCESS Remote Sens. 2015, 7 11390 in future lighting optimizations. The paper presents the methodology and its experimental application on a road section which consists of five luminaires installed on one side of a two-lane road in Otaniemi, Espoo, Finland.
منابع مشابه
Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds
Accurate 3D road information is important for applications such as road maintenance and virtual 3D modeling. Mobile laser scanning (MLS) is an efficient technique for capturing dense point clouds that can be used to construct detailed road models for large areas. This paper presents a method for extracting and delineating roads from large-scale MLS point clouds. The proposed method partitions M...
متن کاملCurb-based Street Floor Extraction from Mobile Terrestrial Lidar Point Cloud
Mobile terrestrial laser scanners (MTLS) produce huge 3D point clouds describing the terrestrial surface, from which objects like different street furniture can be generated. Extraction and modelling of the street curb and the street floor from MTLS point clouds is important for many applications such as right-of-way asset inventory, road maintenance and city planning. The proposed pipeline for...
متن کامل3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method
Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...
متن کاملDetection of Road Curb from Mobile Terrestrial Laser Scanner Point Cloud
The detection of different road furniture such as curb, street floor and sidewalk from point clouds is important in many applications such as road maintenance and city planning. In this paper a pipeline for point cloud processing to detect the road curb from unorganized point clouds captured from a mobile terrestrial laser scanner is proposed. The proposed pipeline utilizes a covariancebased pr...
متن کاملObject Class Recognition Using Global Shape Descriptors in 3D
We formulate Global Shape Descriptors for object classification in range data. The goal of object class recognition is to identify and localize objects of interest in a 3D point cloud. Recognition is performed in three phases: detection, determining the presence of a potential object of interest in the scene, identification, dealing with the problem of labelling that object, and localization, d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 7 شماره
صفحات -
تاریخ انتشار 2015